中国·芯片交易在线
首页 | 供应信息 | 求购信息 | 库存查询 | 新闻中心 | 展会资讯 | IC厂商 | 技术资料 | 自由区域
   新闻首页 |  行业动态 | 新品发布 | 政策法规 | 科技成果 | 模拟技术 | 嵌入系统 | 传感控制 | 存储设计  
当前位置:IC72首页>> IC新闻中心>> 传感控制 >>电子行业新闻正文

光栅四倍频细分电路模块的分析与设计

时间:2008/10/8 10:57:00  作者:  来源:IC72  浏览人数:1291
 
 

      摘要

      给出一种新的光栅位移传感器的四倍频细分电路设计方法.采用可编程逻辑器件(CPLD)设计了一种全新的细分模块,利用VerilogHDL语言编写四倍频细分、辨向及计数模块程序,并进行了仿真.仿真结果表明,与传统方法相比,新型的设计方法开发周期短,集成度高,模块化,且修改简单容易.

      光栅位移传感器是基于莫尔条纹测量的一种传感器,要提高其测量分辨率,对光栅输出信号进行细分处理是必要环节.在实际应用中,通常采用四倍频的方法提高定位精度.四倍频电路与判向电路设计为一个整体,称为四倍频及判向电路.能够实现四倍频的电路结构很多,但在应用中发现,由于某些四倍频电路的精度或稳定性不高,使传感器整体性能下降.作者在分析几种常见四倍频电路的基础上,针对不同的应用,设计了两种不同的四倍频电路实现方案,并对这两种方案的结构和使用方法进行了比较和仿真.

      1四倍频电路设计原理

      光栅传感器输出两路相位相差为90的方波信号A和B.如图l所示,用A,B两相信号的脉冲数表示光栅走过的位移量,标志光栅分正向与反向移动.四倍频后的信号,经计数器计数后转化为相对位置.计数过程一般有两种实现方法:一是由微处理器内部定时计数器实现计数;二是由可逆计数器实现对正反向脉冲的计数.

IC72新闻中心

      光栅信号A,B有以下关系.

      ①当光栅正向移动时,光栅输出的A相信号的相位超前B相90,则在一个周期内,两相信号共有4次相对变化:00→10→11→01→00.这样,如果每发生一次变化,可逆计数器便实现一次加计数,一个周期内共可实现4次加计数,从而实现正转状态的四倍频计数.

      ②当光栅反向移动时,光栅输出的A相信号的相位滞后于B相信号90,则一个周期内两相信号也有4次相对变化:00→01→11→10→00.同理,如果每发生一次变化,可逆计数器便实现一次减计数,在一个周期内,共可实现4次减计数,就实现了反转

      状态的四倍频计数.

      ③当线路受到干扰或出现故障时,可能出现其他状态转换过程,此时计数器不进行计数操作.

      综合上述分析,可以作出处理模块状态转换图(见图2),其中“+”、“-”分别表示计数器加/减1,“0”表示计数器不动作.

IC72新闻中心

      2传统模拟细分电路

      传统的倍频计数电路如图3所示,它由光栅信号检测电路,辨向细分电路,位置计数电路3部分组成.光栅信号检测电路由光敏三极管和比较器LM339组成.来自光栅的莫尔条纹照射到光敏三极管Ta和Tb上,它们输出的电信号加到LM339的2个比较器的正输入端上,从LM339输出电压信号Ua,Ub整形后送到辨向电路中.芯片7495的数据输入端Dl接收Ua,D0接收Ub,接收脉冲由单片机的ALE端提供.然后信号经过与门Y1,Y2和或门E1,E2,E3组成的电路后,送到由2片74193串联组成的8位计数器.单片机通过P1口接收74193输出的8位数据,从而得到光栅的位置.

IC72新闻中心

      采用上述设计方案,往往需要增加较多的可编程计数器,电路元器件众多、结构复杂、功耗增加、稳定性下降.

      3基于CPLD实现的光栅四细分、辨向电路及计数器的设计

      采用CPLD实现光栅传感器信号的处理示意图如图4所示,即将图3中3个部分的模拟逻辑电路全部集成在一片CPLD芯片中,实现高集成化.由于工作现场的干扰信号使得光栅尺输出波形失真,所以将脉冲信号通过40106施密特触发器及RC滤波整形后再送入CPLD,由CPLD对脉冲信号计数和判向,并将数据送入内部寄存器.

IC72新闻中心

      3.1CPLD芯片的选择

      CPLD芯片选用ALTERA公司的MAX7000系列产品EPM7128S,该芯片具有高阻抗、电可擦、在系统编程等特点,可用门单元为2500个,管脚间最大延迟为5μs工作电压为+5V.仿真平台采用ALTERA公司的QUARTUSⅡ进行开发设计.

      3.2四细分与辨向电路

      四细分与辨向模块逻辑电路如图5所示,采用10MB晶振产生全局时钟CLK,假设信号A超前于B时代表指示光栅朝某一方向移动,A滞后于B时表示光栅的反方向移动.A,B信号分别经第一级D触发器后变为A',B'信号,再经过第二级D触发器后变为A″,B″信号.D触发器对信号进行整形,消除了输入信号中的尖脉冲影响,在后续倍频电路中不再使用原始信号A,B,因而提高了系统的抗干扰性能.在四倍频辨向电路中,采用组合时序逻辑器件对A'A″,B'B″信号进行逻辑组合得到两路输出脉冲:当A超前于B时,ADD为加计数脉冲,MIMUS保持高电平;反之,当A滞后于B时,ADD保持高电平,MINUS为减计数脉冲.

IC72新闻中心

      对比图5和图2可以看出,新型设计方法使用的器件数较传统方法大大减少,所以模块功耗显著降低.系统布线在芯片内部实现,抗干扰性强.由于采用的是可编程逻辑器件,对于系统的修改和升级只需要修改相关的程序语句即可,不用重新设计硬件电路和制作印刷电路板,使得系统的升级和维护的便捷性大大提高.

      4四倍频细分电路模块的仿真

      根据图2所示的状态转换图,利用硬件描述语言VerilogHDL描述该电路功能,编程思想为将A,B某一时刻的信号值的状态合并为状态的判断标志state,并放入寄存器prestate.当A,B任一状态发生变化时,state值即发生改变,将此时的state值与上一时刻的prestate进行比较,则能根据A,B两个脉冲的状态相对变化确定计数值db的加减,得出计数器输出值的加减标志.

      仿真结果如图6所示.当信号A上跳沿超前于B时,计数值db进行正向计数;当A上跳沿滞后于B时,计数值db进行反向计数.即db将细分、辨向、计数集于一身,较好地实现了光栅细分功能.

      比较图3和图5可以看出,用FPGA设计信号处理模块,设计过程和电路结构更加简洁.另外,在应用中需注意FPGA时钟周期应小于光栅信号脉冲的1/4.

      5结论

      ①新型设计方法结构简单,集成度高,比传统设计方法所用器件数大大减少.

      ②集成化设计使系统功耗降低,抗干扰性增强.

      ③用VerilogHDL设计电路,改变电路结构只需修改程序即可,且系统维护和升级的便捷性提高.

 
【相关文章】
·光栅四倍频细分电路模块的分析与设计
 
 
IC新闻搜索
 
热点新闻
基于红外超声光电编码器的室内移动小车定位系
基于闪烁存储器的TMS320VC5409DSP并行引导装载方法
非移动市场需求飙升,ARM预计2010年出货量超50亿片
一种快速响应的电容式湿度传感器感湿薄膜设计
利用特殊应用模拟开关改进便携式设计
无线传感器网络跨层通信协议的设计
基于ARM9内核Processor对外部NAND FLASH的控制实现
基于GSM技术的汽车防盗系统的设计
热电阻在烟叶初烤炕房温度控制中的应用
高速数据转换系统对时钟和数据传输的性能要求
友情连接
 关于我们  IC论坛  意见反馈  设置首页  广告服务  用户帮助  联系我们
copyright:(1998-2005) IC72 中国·芯片交易在线
(北京)联系电话:(010)82614113、82614123 传真:(010)82614123 客户服务:service@IC72.com 库存上载:IC72@IC72.com
在线MSN咨询:ic72sale8@hotmail.com 通信地址:北京市西城区西直门内大街2号大厦15层 邮政编码:100013
(深圳)联系方式: 在线MSN咨询:ic72sale6@hotmail.com 在线QQ咨询:191232636 通信地址:深圳市福田区振华路
注 册 号: 1101081318959(1-1)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9