1 引言
1988年,在法国巴黎大学物理系Fert教授科研组工作的巴西学者M.N.Baibich研究Fe/Cr磁性超晶格薄膜的电子输运性质时发现了巨磁阻(GMR)效应,即材料的电阻率随着材料磁化状态的变化而呈现显著改变的现象。这一发现引起了许多国家科学家的关注,巨磁电阻效应及其材料的基础研究和应用研究迅速成为人们关注的热点。自此以后,10多年来,巨磁电阻效应的研究发展非常迅速,并且基础研究和应用研究几乎齐头并进,已成为基础研究快速转化为商业应用的国际典范。目前,GMR材料已在磁传感器、计算机读出磁头、磁随机存取存储器等领域得到商业化应用。
利用GMR材料制作的传感器称作巨磁阻传感器,它具有灵敏度高、探测范围宽、抗恶劣环境等优点,可利用半导体曝光和刻蚀工艺,使该元件集成化、小型化,其性价比远远优于其他几种磁场传感器。本文综述一种将GMR传感器和生物技术相结合的新型传感器——GMR生物传感器。该传感器应用于生物检测领域,是一种对磁标记的生物样本进行检测的传感器,由免疫磁性微球(IMB)、高磁灵敏度的GMR传感器以及相关读出电路三部分构成。
2 免疫磁性微球
1979年,John Ugelstad等人成功地制备了一种均匀性和粒度适宜的聚苯乙烯微球,将其磁化并与抗体连接后,即成为一种分离细胞效果极佳的免疫磁标记——dynabeads。从此,免疫磁标记得到广泛应用,并引发了生物分离技术上的一次革命。免疫磁标记的特点主要有分离速度快、效率高、可重复性好、操作简单、不需要昂贵的仪器设备、不影响被分离细胞或其他生物材料的生物学性状和功能。
免疫磁性微球,或称免疫磁标记,是表面结合有单克隆抗体的磁性微球,是近年来国内外研究比较热门的一种新的免疫学技术。它以免疫学为基础,渗透到病理、生理、药理、微生物、生化及分子遗传学等各个领域,其应用口益广泛,尤其在免疫学检测、细胞分离、蛋白质纯化等方面取得巨大的进展。现在国外已经有多家公司专门生产磁标记产品,如比较著名的Dynal,Nanomag,Micromer公司等。国内生产该方面产品的公司有宁波新芝生物科技股份有限公司、杭州联科生物技术有限公司、深圳纳微生物科技有限公司等。图1是一些免疫磁标记的磁化曲线,其中,Dynal公司的M-280是目前最常用于GMR生物传感器检测的免疫磁标记,直径2.8μm,具有超顺磁性。
免疫磁标记技术的基本原理如下:免疫磁标记既可结合活性蛋白质(抗体),又可被磁铁所吸引,经过一定处理后,可将抗体结合在磁标记上,使之成为抗体的载体,磁标记上抗体与特异性抗原物质结合后,则形成抗原-抗体-磁标记免疫复合物。免疫磁标记的功能基团主要与蛋白质结合,但是借助亲和素-生物素系统,还能使免疫磁标记与非蛋白质结合,如各种DNA,RNA分子等.从而使免疫磁标记发挥更大作用。
3 高灵敏度的GMR传感器
目前,由实验和理论研究所得出具有GMR效应的磁有序材料主要有四种类型:多层膜结构、自旋阀结构、磁性合金颗粒结构以及颗粒-薄膜复合结构。四种结构各有特点,而GMR生物传感器大多采用多层膜结构或自旋阀结构。
美国海军实验室于1998年率先提出利用GMR效应和免疫磁标记实现GMR牛物传感器的设想。他们通过测量DNA、抗原-抗体、施体和受体等的实验,证明了其原理的可行性,从而进一步提出了磁标记阵列计数器(BARC),并研制出DNA阵列芯片。图2是美围海军实验室和NVE公司联合设计的第三代BARC阵列芯片,其平面布局如图2(a)所示,图2(b)是图2(a)的局部放大,它采用半导体工艺在硅基片上集成了64路GMR传感器,每一路传感器都是由总长为8 mm、宽为1.6μm磁阻条来回曲折地分布在直径为200μm的圆形区域内(图2(c)),其磁电阻值为42 kΩ,饱和磁化强度和GMR效应(△R/R)分别为30 mT和15%,每一个传感器可以单独完成一种检测。传感器采用磁性层/非磁性层/磁性层的多层膜结构,被非磁性层隔开的两个磁性层之间反平行耦合。
除了美国海军实验室和NVE公司以外,美国斯坦福大学、德国比勒非尔德大学、葡萄牙里斯本大学等也对GMR生物传感器展开研究。在国内,对GMR生物传感器展开研究的有中国科学院电工研究所、清华大学、电子科技大学等,虽然取得了一定的进展,但是缺乏和生物技术的有机结合,发展比较落后。
GMR传感器检测过程如图3所示。首先,在传感器表面生成用于特定检测的生物探针(图3(a)),再使检测试液流过传感器表面,试液中特定的目标分子将被探针捕获(图3(b)),然后加入免疫磁性微球,免疫磁性微球与目标分子发生作用完成标记(图3(c))。此时,需要采用垂直于传感器表面的外加梯度磁场将未参与标记的多余免疫磁性微球分离,这样可以减小检测时的背景噪声,从而提高检测的精确度。然后,再用外加的交变磁场将磁标记磁化,磁化的磁标记产生的附加交变磁场引起传感器磁电阻的变化,通过读取磁电阻的变化可以判定待检试液中是否有目标分子,并根据磁电阻变化的幅度可以判断待检试液中目标分子的浓度等情况。
4 信号检测电路
磁电阻的变化需要转化成电信号,有两种实现方式,一是惠斯登桥路结构,如图4(a)所示,另一种是采用I-V转换法,如图4(b)所示。
两种方式的输出信号都是在检测信号中除去参考信号代表的背景噪声,然后将其放大。但是由于材料、器件的物理原因产生的噪声是不可能完全消除的,当检测信号非常弱时,由于信噪比太低,上述的电路无法实现对信号的读出,此时必须采用锁相放大技术才能读出信号,其检测过程如图4(c)所示。锁相放大技术是用于微弱信号检测的有效方法之一,它采用互相关技术将待测信号中和参考信号同步的信号放大并检测出来。
锁相放大器由信号通道、参考通道和相关器(又称鉴相器)三部分组成,信号通道的作用是将弱信号放大到足以推动相关器工作的电平,并兼有抑制和滤除部分干扰及噪声的功能;相关器是一种完成被测信号与参考信号互相关函数运算的单元电路,由乘法器和积分电路组成;参考通道提供一个和被测信号频率相同的周期信号。
目前,对GMR生物传感器的信号检测大多采用市场上常见的通用型锁相放大器,其满刻度灵敏度可达到nV量级,但它们大多是模块化的测试仪器,体积过大,价格昂贵,不宜于产品的市场化。为此,非常有必要设计一种专用于GMR传感器芯片和半导体技术具有良好的兼容性,可将其与锁相放大IC芯片采用MCM技术封装在一起,这将大大提高GMR生物传感器的实用性、普及性。
5 结语
综上所述,巨磁电阻生物传感器集成物技术、半导体技术、磁性薄膜技术以及微弱信号检测技术于一身,通过对免疫磁标记的检测,可精确判定待检试液的成分及所含成分的浓度等情况,是GMR传感器在生物检测领域的一次成功拓新。由于它具有灵敏度高、分辨力强、价格低廉、设备小型化及测量过程自动化等诸多优点,在生命科学、医学及国防等领域的应用潜力巨大,并且随着半导体工艺的进步,它的集成度和灵敏度还将有更进一表示问候步的提高。但是,目前对GMR生物传感器的研究,国内外都尚处于基础阶段研究,离实用化还有一定的距离。 |