中国·芯片交易在线
首页 | 供应信息 | 求购信息 | 库存查询 | 新闻中心 | 展会资讯 | IC厂商 | 技术资料 | 自由区域
   新闻首页 |  行业动态 | 新品发布 | 政策法规 | 科技成果 | 模拟技术 | 嵌入系统 | 传感控制 | 存储设计  
当前位置:IC72首页>> IC新闻中心>> 模拟技术 >>电子行业新闻正文

电力线数传通信设备的设计

时间:2006/6/8 10:02:00  作者:  来源:ic72  浏览人数:1924
 
 

      引 言

      随着社会的进步和技术的发展,多媒体业务不断增长,人们对网络带宽的要求也随之增长。通信网正向着IP化、宽带化方向发展。通信网由传输网、交换网和接入网三部分组成。目前,我国传输网已经基本实现数字化和光纤化;交换网也实现了程控化和数字化;而接入网仍然是通过双绞线与局端相连,只能达到56 kb/s的传输速率,不能满足人们对多媒体信息的迫切需求。对接入网进行大规模改造,以升级到FTTC(光纤到路边)甚至FTTH(光纤到户),需要高昂的成本,短期内难以实现。XDSL技术实现了电话线上数据的高速传输,但是大多数家庭电话线路不多,限制了可连接上网的电脑数,而且在各房间铺设传输电缆极为不便。最为经济有效而且方便的基础设备就是电源线,把电源线作为传输介质,在家庭内部不必进行新的线路施工,成本低。电力线作为通信信道,几乎不需要维护或维护量极小,而且可以灵活地实现即插即用。此外,由于不必交电话费,月租费便宜。
 ic72新闻中心  

ic72新闻中心

      电力线高速数据传输使电力线做为通信媒介已成为可能。铺设有电力线的地方,通过电力线路传输各种互联网的数据,就可以实现数据通信,连成局域网或接入互联网。通过电源线路传输各种互联网数据,可以大大推进互联网的普及。此项技术还可以使家用电脑及电器结合为可以互相沟通的网络,形成新型的智能化家电网,用户在任何地方通过Internet实现家用电器的监控和管理;可以直接实现电力抄表及电网自动化中遥信、遥测、遥控、遥调的各项功能,而不必另外铺设通信信道。因此,研究电力
线通信是十分必要的。

      1 OFDM基本原理

      正交频分复用OFDM(Orthogonal Frequency Division Multiplexing)是一种正交多载波调制MCM方式。在传统的数字通信系统中,符号序列调制在一个载波上进行串行传输,每个符号的频率可以占有信道的全部可用带宽。OFDM是一种并行数据传输系统,采用频率上等间隔的N个子载波构成。它们分别调制一路独立的数据信息,调制之后N个子载波的信号相加同时发送。因此,每个符号的频谱只占用信道全部带宽的一部分。在OFDM系统中,通过选择载波间隔,使这些子载波在整个符号周期上保持频谱的正交特性,各子载波上的信号在频谱上互相重叠,而接收端利用载波之间的正交特性,可以无失真地恢复发送信息,从而提高系统的频谱利用率。图1给出了正交频分复用OFDM的基本原理。考虑一个周期内传送的符号序列(do,d1,…,dn-1)每个符号di是经过基带调制后复信号di=ai+jbi,串行符号序列的间隔为△t=l/fs,其中fs是系统的符号传输速率。串并转换之后,它们分别调制N个子载波(fo,f1,…,fn-1),这N个子载波频分复用整个信道带宽,相邻子载波之间的频率间隔为1/T,符号周期T从△t增加到N△t。合成的传输信号D(t)可以用其低通复包络D(t)表示。

ic72新闻中心

    
      其中ωi=-2π·△f·i,△f=1/T=1/N△t。在符号周期[O,T]内,传输的信号为D(t)=Re{D(t)exp(j2πfot)},0≤t≤T。
若以符号传输速率fs为采样速率对D(t)进行采样,在一个周期之内,共有N个采样值。令t=m△t,采样序列D(m)可以用符号序列(do,d1,…,dn-1)的离散付氏逆变换表示。即

      因此,OFDM系统的调制和解调过程等效于离散付氏逆变换和离散付氏变换处理。其核心技术是离散付氏变换,若采用数字信号处理(DSP)技术和FFT快速算法,无需束状滤波器组,实现比较简单。

      2 电力线数传设备硬件构成

      电力线数据传输设备的硬件框图如图2所示。

ic72新闻中心

      2. 1 数字信号处理单元TMS320VC5402

            用数字信号处理的手段实现MODEM需要极高的运算能力和极高的运算速度,在高速DSP出现之前,数字信号处理只能采用普通的微处理器。由于速度的限制,所实现的MODEM最高速度一般在2400b/s。自20世纪70年代末,Intel公司推出第一代DSP芯片Intel 2920以来,近20年来涌现出一大批高速DSP芯片,从而使话带高速DSP MCODEM的实现成为可能。

      TMS320系列性价比高,国内现有开发手段齐全,自TI公司20世纪80年代初第一代产品TMS32010问世以来,正以每2年更新一代的速度,相继推出TMS32020、TMS320C25、TMS320C30、TMS320C40以及第五代产品TMS320C54X。

      根据OFDM调制解调器实现所需要的信号处理能力,本文选择以TMS320VC5402作为数据泵完成FFT等各种算法,充分利用其软件、硬件资源,实现具有高性价比的OFDM高速电力线数传设备

      TMS320C54X是TI公司针对通信应用推出的中高档16位定点DSP系列器件。该系列器件功能强大、灵活,较之前几代DSP,具有以下突出优点:

      ◇速度更快(40~100 MIPS);

      ◇指令集更为丰富;

      ◇更多的寻址方式选择;

      ◇2个40位的累加器;

      ◇硬件堆栈指针;

      ◇支持块重复和环型缓冲区管理。

      2. 2高频信号处理单元

      主要实现对高频信号的放大、高频开关和线路滤波等功能,并最终经小型加工结合设备送往配电线路。信号的放大包括发送方向的可控增益放大(前向功率控制),接收方向AGC的低噪声放大部分。其中高频开关完成收发高频信号的转换,实现双工通信。同时使收发共用一个线路滤波器,这样可以节省系统成本。

      2.3 RS一232接口单元

      用户数据接口采用RS一232标准串行口。串口的数据中断采用边沿触发中断,串口中断程序完成用户数据的发送与接收。将接收到的用户数据暂存到CPU的发送缓冲区中,等到满一个突发包时就发送到DSP进行处理

      3 参数设计

      3.1保护时间的选择

      根据OFDM信号设计准则,首先选择适当的保护时间,△=20μs,这能够充分满足在电力系统环境下,OFDM信号消除多径时延扩展的目的。

      3.2符号周期的选择

      T>200 μs,相应子信道间隔,f<5kHz,这样在25kHz带宽内至少要划分出5个子信道。另外子信道数不能太多,增加子信道数虽然可以提高频谱传输效率,但是DSP器件的复杂度也将增加,成本上升,同时还将受到信道时间选择性衰落的严重影响。因此,考虑在25kHz的带宽内采用7个子信道。

      3. 3子信道数的计算

      子信道间隔:ic72新闻中心

      各子信道的符号周期:T=250μs

      考虑保护时间:△=20μs,则有Ts=T+△=270μs

      各子信道实际的符号率:ic72新闻中心

      总的比特率:3.71kbps×25子信道×2b/symbol=185.5kb/s

      系统的频谱效率:β=185.5kbps/100kHz=1.855bps/Hz<2bps/Hz

      可以看出,这时系统已经具有较高的频谱效率。25路话音信号总的速率与经串并变换和4PSK映射后的各子信道上有用信息的符号率相比,每个子信道还可以插入冗余信息用于同步、载波参数、帧保护和用户信息等。需要指出的是:

      ①由于OFDM信号时频正交性的限制条件,在此设计中尽管采用了25个子载波并行传输也只能传25路语音。如果要传8路语音,经串并转换和16QAM映射后,各个子信道上有用信息的符号率为1.855bps/Hz,最多还可以插入的冗余信息为O.145bps/Hz,在实际传输中这是很难保证的传输质量的,因此该设计相对于M-16QAM采用4个子载波传输6路话音并不矛盾。

      ②在此设计中,为冗余信息预留了较多的位,其冗余信息与有用信息的比值为0.59,大于iDEN系统的0.44。这是考虑到OFDM信号对于载波相位偏差和定时偏差都较为敏感,这样就可以插入较多的参考信号以快速实现载波相位的锁定、跟踪及位同步;另一方面对引导符号间隔的选择也较为灵活,在设计中选择引导符号间隔L=10。  

      ③OFDM信号调制解调的核心是DFT/IDFT算法。目前,普遍采用DSP芯片完成DFT/IDFT,因此有必要对设计所需的DSP性能进行估计。根据设计要求,至少要能在250μs内完成32个复数点的FFT运算。我们知道,N个复数点的FFT共需要2Nlog2 N次实数乘法和3Nl0g2 N次实数加法。假设实数乘法和实数加法都是单周期指令,以32个复数点为例,这样共需要800个指令周期,即20μs,因此采用TMS320VC5402能够满足设计要求(TMS320VC5402的单指令周期为10ns)。

      综上所述,OFDM数传设备参数如表l所列。

 ic72新闻中心    

      4 软件构成

      4. 1 调制部分的软件设计

      此程序作为子程序被调用之前,要发送的数据已经被装入数据存储器,并将数据区的首地址及长度作为入口参数传递给子程序。程序执行时,首先清发送存储器,然后配置AD9708的采样速率,之后允许串行口发送中断产生,使中断服务程序自动依次读取发送存储器中的内容,送入AD9708变换成模拟信号。之后程序从数据存储器读取一帧数据,经编码,并行放入IFFT工作区的相应位置,插入导频符号并将不用的点补零。随后进行IFFT,IFFT算法采用常用的时域抽点算法DIT,蝶形运算所需的WN可查N=512字的定点三角函数表得到。由于TMS320VC5402的数值计算为16位字长定点运算方式,所以IFFT采用成组定点法,既提高了运算精度又保证了运算速度。然后对IFFT变换后的结果扩展加窗,并将本帧信号的前扩展部分同上帧信号的后扩展部分相加,加窗所需窗函数可查表得到。窗函数存放在窗函数表中,是事先利用C语言浮点运算并将结果转换为定点数存放在表中的。

      经实测,从读取串行数据到加窗工作完成最多占用75个抽样周期(75×125μs)的时间,而发送一帧信号需512+32=544个抽样周期(544×125μs)。这说明C5402的运算速度足够满足需要。

      当上一帧信号发送完毕,程序立即将以处理好的本帧信号送入发送存储器继续发送,并通过入口参数判断数据是否发送完毕。

      4. 2 解调部分的软件设计

      用TMS320VC5402实现的流程分同步捕捉及解调两个阶段。同步捕捉阶段执行时,首先清接收存储器,配置AD9057的采样速率,然后开串行口接收中断,使接收中断服务程序接收来自AD9057的采样数据并依次自动存入接收存储器。

      每得到一个新的样点,程序先用DFT的递推算法解调出25路导频符号,并对导频均衡。之后分别同参考导频符号矢量600h+j600h进行点积,这里用导频符号矢量的实部与虚部的和代替点积,即可反映相关函数的规律,以简化运算。求得25路导频与参考导频的相关值后暂时保存,并分别与前一个样点所保存的各导频相关值比较(相减),用一个字节保存比较结果的正负号(每路导频占1bit)。在处理前一个样点的过程中,也用一个字节保存它同其前一样点的导频相关值比较的正负号。对这两个字节进行简单的逻辑运算,即可判断出各导频是否在前一个样点处出现峰值。倘若25路导频中有20个以上的导频同时出现峰值,则认为该样点以前的N=512个样点即为捕捉到的一帧信号,程序进入解调阶段;否则等待接收新的采样点继续进行同步捕捉。

      解调阶段首先对捕捉到的帧信号进行实信号的FFT变换,仍然采用成组定点法,之后进行均衡。然后利用导频算出本地抽样时钟的延迟τ,在计算中应尽量避免出现除法,可将常数分母取倒数后提前算出,作为乘法的系数。为了保证其后二维AGC的精度,计算中τ精确到O.1μs。接下来根据τ调整抽样时钟,程序将调整量通知串行口发送中断服务程序后,继续执行二维AGC,而由中断服务程序在每次中断响应时间发布命令,每次可以调整下一采样时刻提前(或落后)1μs。

      二维AGC分两步进行。首先根据τ对均衡后的调制矢量进行相位校正,这里需要利用FFT变换所使用的512字的三角函数表,用一个指针指向三角函数表的表头,根据τ及三角函数表角度间隔算出多少路子信道才需要将指针下移一格,通过这种查表的方法可以简洁地确定各子信道的校正量。经相位校正后,即可利用导频进行幅度校正。

      接下来经判决,并/串变换及解码即可解调出本帧数据。然后对均衡器的权值采用LMS算法进行调节。程序通过对这部分信号进行简单的幅值门限分析,很容易判断出是否收到了信号。若有则继续接收;否则结束返回。

      结语

      本文介绍了OFDM技术的基本原理,叙述了基于OFDM技术的电力线数传通信设备的软硬件设计,给出了此设计的具体参数。

 

 
【相关文章】
·ADI的16位ADC可提供79dB的最高信噪比
·电力线数传通信设备的设计
· 凌特推出低功耗ADC可同时对6个差分输入采样
·ADI发布超小型芯片级封装的双通道仪表放大器
·意法半导体推出超高速视频放大器
·Pulsus推出全数字功率放大器
·Rohde&Schwarz I/Q调制发生器可提供300MHz时钟频率
·Inphi的互阻抗放大器采用可提高光接收器性能的TIA技术
·Dallas发布新款可减少元件数和布线面积的控制器监视器
·Cirrus Logic重返音频领域
·Zetex新型电流监视器适合模块电源应用
·ADI两款16位ADC具79dB信噪比,速率达130MSPS
·Allegro白色LED驱动器输出电流达120mA
·国半最新低噪音CMOS运算放大器可以高达24V的供电电压操作
 
 
IC新闻搜索
 
热点新闻
基于红外超声光电编码器的室内移动小车定位系
基于闪烁存储器的TMS320VC5409DSP并行引导装载方法
非移动市场需求飙升,ARM预计2010年出货量超50亿片
一种快速响应的电容式湿度传感器感湿薄膜设计
利用特殊应用模拟开关改进便携式设计
无线传感器网络跨层通信协议的设计
基于ARM9内核Processor对外部NAND FLASH的控制实现
基于GSM技术的汽车防盗系统的设计
热电阻在烟叶初烤炕房温度控制中的应用
高速数据转换系统对时钟和数据传输的性能要求
友情连接
 关于我们  IC论坛  意见反馈  设置首页  广告服务  用户帮助  联系我们
copyright:(1998-2005) IC72 中国·芯片交易在线
(北京)联系电话:(010)82614113、82614123 传真:(010)82614123 客户服务:service@IC72.com 库存上载:IC72@IC72.com
在线MSN咨询:ic72sale8@hotmail.com 通信地址:北京市西城区西直门内大街2号大厦15层 邮政编码:100013
(深圳)联系方式: 在线MSN咨询:ic72sale6@hotmail.com 在线QQ咨询:191232636 通信地址:深圳市福田区振华路
注 册 号: 1101081318959(1-1)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9