中国·芯片交易在线
首页 | 供应信息 | 求购信息 | 库存查询 | 新闻中心 | 展会资讯 | IC厂商 | 技术资料 | 自由区域
   新闻首页 |  行业动态 | 新品发布 | 政策法规 | 科技成果 | 模拟技术 | 嵌入系统 | 传感控制 | 存储设计  
当前位置:IC72首页>> IC新闻中心>> 存储设计 >>电子行业新闻正文

带RTC的I2C总线铁电存储器FM31256

时间:2007/4/3 10:57:00  作者:  来源:ic72   浏览人数:1360
 
 

      FM31256是一种基于I2C总线、采用铁电体技术的多功能存储芯片。除了非易失存储器外,该器件还具有实时时钟、低电压复位、看门狗计数器、非易失性事件计数器、可锁定的串行数字标识等多种功能。文章主要介绍了FM31256的基本功能、原理,并结合实例给出了其在电磁铸轧电源控制装置中的具体应用方法。

      FM31256是由Ramtron公司推出的新一代多功能系统监控和非易失性铁电存储芯片。与其他非易失性存储器比较,它具有如下优点: 读/写速度快,没有写等待时间;功耗低,静态电流小于1 mA,写入电流小于150 mA;擦写使用寿命长,芯片的擦写次数为100亿次,比一般的EEPROM存储器高10万倍,即使每秒读/写30次,也能用10年;读/写的无限性,芯片擦写次数超过100亿次后,还能和SRAM一样读/写。

      铁电存储器(FRAM)的核心技术是铁电晶体材料。这一特殊材料使铁电存储器同时拥有随机存取存储器(RAM)和非易失性存储的特性。本文介绍了FM31256的主要功能,并具体给出了基于嵌入式C语言编写的存储器读/写程序。

      1 FM31256的基本结构及原理

      FM31256由256 KB存储器和处理器配套电路(processor companion)两部分组成。与一般的采用备份电池保存数据不同,FM31256是真正意义上的非易失(truly nonvolatile)存储器,并且用户可以选择对不同的存储区域以软件方式进行写保护。

      FM31256 器件将非易失FRAM与实时时钟(RTC)、处理器监控器、非易失性事件计数器、可编程可锁定的64位ID号和通用比较器相结合。其中,通用比较器可提前在电源故障中断(NMI)时发挥作用或实现其他用途。采用先进的0.35 μm制造工艺,这些功能通过一个通用接口嵌入到14个引脚的SOIC封装中,从而取代系统板上的多个元件。存储器的读/写以及其他控制功能都通过工业标准的I2C总线来实现。

      图1为FM31256的原理图。其中,SDA和SCL引脚用于与CPU进行数据交换和命令写入,数据输出部分均具有施密特触发器,以提高抗干扰性能;同时,SDA作为二线接口中的双向信号线,集电极开路输出,可与二线总线上其他器件进行“线或”。A1~A0为器件地址选择信号,即总线上可同时使用4个同类器件。正常模式下,PFI引脚分别为比较器的输入(不可悬空),CAL/PFO引脚输出PFI引脚的输入信号与1.2 V参考电压之间的比较结果;校准模式下,CAL/PFO引脚将输出512 Hz的方波用于时钟校准。CNT2~CNT1是通过备份电池支持的事件计数器的两路输入端,通过边沿触发启动计数器,触发沿由用户自由选择。

ic72新闻中心

图1 FM31256原理图

      2 FM31256功能及使用方法

      在FM31256中,有25个特殊功能寄存器(SFR)00H~18H。通过对这些功能寄存器进行操作,可以实现各种功能。

      2.1 特殊功能寄存器

      (1) 实时时钟和比较器

      实时时钟包括晶体振荡器、时钟分频器和寄存器系统。它分割32.768 Hz的时基信号以提供1 s(1 Hz)的分辨率,寄存器(02H~08H)以BCD格式提供秒、分、时、星期、日、月、年信息,用户可对其进行读/写访问。启动时钟前须将SFR中01H地址的OSCEN位(D7)置位,振荡器起振;同时将00H地址的R位(D0)置位,可将时钟数据写入寄存器用于读出。若此时正处于时钟刷新阶段,则由于刷新操作优先于写入寄存器的操作,因而保证了时钟的准确性。重新设置时钟时,只须设定00H地址的W位。

      FM31256的时钟精度可通过软件校准,将00H地址的CAL位(D2)置位,时钟进入校准模式,比较器输出512 Hz的频率信号,并可通过设置01H地址的CAL4~CAL0位(D4~D0)确定校准值。当00H地址的CAL位(D2)为0时,进入比较器模式。

      (2) 处理器伴侣

      处理器伴侣包括CPU通常需要的功能。系统监测由低电平状态或看门狗计数溢出的中断输出信号。

      当系统电源电压低于设定的阈值或看门狗计数器溢出时,FM31256将输出低电平复位脉冲,复位信号持续100 ms。改变0BH地址的VTP1~VTP0位(D1~D0),可以设定电平检测的阈值;改变0AH地址的WDT4~WDT0位(D4~D0),看门狗的溢出时间可以在100 ms到3 s之间选择,其中0AH地址的WDE位(D7),用于看门狗启动或停止;09H地址用于监视复位信号来源(看门狗计数器、上电复位或后备电源电压)以及控制看门狗计数器清零。系统软件须在要求的时间周期内,向09H地址的WR3~WR0位(D3~D0)写入1010,使计数器清零。

      (3) 事件计数器

      FM31256有2个独立的后备电池支持的16位事件计数器CN1和CN2,位于寄存器0DH~10H中。若将SFR中0CH地址的CC位(D2)置位,则可以组成一个32位的计数器。CIN1和CIN2是事件计数器信号输入端,在32位计数器模式下CIN2无效。计数采用可编程边沿触发方式,若0CH地址的C1P位(D0)置位,则CIN1采用上升沿触发,否则是下降沿触发;0CH地址的C2P位(D1)用于控制CIN2。

      (4) 串行数据标识区

      FM31256的SFR中的11H~18H地址串行标识区中可以保存8字节(64位)数据。该存储区为非易失性存储区,可对其进行无限次的读/写操作,但如果将0BH地址的SNL位(D7)置位,则不能再对该存储区进行操作,且这种操作是不可逆的。

      2.2 FM31256的读/写操作

      FM31256作为从机,集成了两个功能不同的部件,每个部件都可以被独立访问。一个是存储器,访问时从机地址的位7~4必须被设置为1010B;若要访问实时时钟/处理器伴侣,则从机地址的位7~4必须被设置为1101B。该器件采用二线制的I2C接口,二线协议由SDA和SCL两个引脚的状态确定。共有4种状态: 开始、停止、数据传输及应答。其通信基本格式如图2所示。

ic72新闻中心

图2 I2C总线通信基本格式

      FM31256严格按I2C总线的时序和数据格式操作,其访问操作过程可描述为如下步骤: 启动—从机地址—应答—目标地址—应答—(启动—从机地址—应答)—数据(单或多字节)—应答—停止(注: 从机地址中包含了读写命令;括号中的步骤为当前地址读和连续地址读命令所特有的)。这里对应答信号作些说明。应答脉冲发生在第8个数据位传送之后。在这个状态下,发送方须释放SDA让接收方驱动;当接收方发出低电平时,表示正常应答,当发出高电平时,表示无应答。不应答有两种情况: 一是数据传送出错,无应答使发送方终止当前操作,以便重新寻址;二是接收方有意不作应答,以结束当前操作。

      在对SFR操作时,首先发送的命令字节为“1 1 0 1 X A1 A0 R/W”,目标地址为单字节范围(00H~18H)。FM31256的32 KB存储单元地址为0000H~7FFFH,对其进行操作时,首先发送的命令字节为“1 0 1 0 X A1 A0 R/W”,目标地址长度为双字节,即RAM区的寻址能力为0~65 535。FM31系列存储器具有内部地址锁存和自动累加功能,当对连续地址区进行读/写操作时,只须发送存储区首地址。

      3 FM31256在电磁铸轧电源控制中的应用

      将FM31256应用在电磁铸轧电源控制装置当中,实现主控系统的看门狗复位、给定参数、实时时钟及故障记录保存的功能。

      作为一种解决微处理器因干扰而死机问题的有效方法,看门狗的作用是必不可少的。针对控制对象,需要对A、B、C三相控制装置进行调节,包括设定正弦波的频率和幅值、反馈系数、PID参数、过流延时、开放延时和关断延时等;将这些给定的参数及时写入铁电存储器FM31256的存储单元中,使之掉电后仍能保存。当系统发生故障时,例如控制装置中晶闸管周围温度超过额定温度,装置就会发出报警信号,并将发生故障的准确时间、实际温度值记录在FM31256的存储单元中,以便系统查询;同时,FM31256的事件计数器加1计数。同样,利用串行标识区可锁定的功能,可将电磁铸轧电源控制装置的序列号写入其中,非常安全可靠。

      3.1 硬件原理

      电磁铸轧电源控制装置应用FM31256的硬件接口电路如图3所示。从图3中可以看出,系统以超低功耗MSP430系列芯片MSP430F149作为控制器;FM31256作为参数存储单元,与处理器之间采用I2C总线进行通信。由于MSP430F149没有I2C总线接口,所以任取2个I/O口模拟。实时时钟在VDD掉电以后自动切换到后备电源VBAK。

ic72新闻中心

图3 FM31256与MSP430F149的硬件接口电路

      32.768 kHz晶振等效于6 pF电容。若将SFR的01H单元对应的OSCEN位设为0,同时置00H单元的CAL位为1,使CAL引脚输出512 Hz的脉冲信号,则可检测晶振工作是否正常,因为512 Hz是晶振频率的64分频。制PCB板时须注意: X1和X2晶振引脚均为高阻引脚,两引脚之间的距离须小于5 mm;即使信号位于板内层,也不允许信号线靠近X1和X2引脚。在晶振引脚周围使用接地保护环,内部或板反面使用接地保护敷铜。

      3.2 存储区访问程序设计

      对FM31256存储器访问操作过程中,微处理器处于主机地位,器件始终处于从机地位。根据上述对FM31256的分析,可以把所有的通信过程归纳为3种类型: ① 单脉冲,如Start、Stop、Ack、Nack;② 字节发送,如从机地址、目标地址和数据传送;③ 字节接收,如读操作中的数据传送。因此只要把这些操作以子程序的形式编写好,所有的通信操作就可通过调用这些子程序来完成。这里以MSP430F149微处理器的嵌入式C语言编写。设微处理器端口P6.6为数据线(SDA);P5.4为时钟线(SCL)。

      限于篇幅,本文不作详细介绍,只给出模拟I2C总线及字节写入、读出的部分C语言程序:

      #defineRTC_SDABIT6
      #defineRTC_SCLBIT4
      void FM31256_Start(void) {/*FM31256启动程序*/
            P6OUT |=RTC_SDA;// SDA=1
            P5OUT |=RTC_SCL;// SCL=1
            delay(IIC_DELAY);
            P6OUT &=~ RTC_SDA;// SDA=0
            delay(IIC_DELAY);
            P5OUT &=~ RTC_SCL;// SCL=0}
      void FM31256_Stop( void ) {/*FM31256停止程序*/
            P6OUT &=~ RTC_SDA;// SDA=0
            delay(IIC_DELAY);
            P5OUT |=RTC_SCL;// SCL=1
            delay(IIC_DELAY);
            P6OUT |=RTC_SDA;// SDA=1
            delay(IIC_DELAY);}
      void FM31256_Send_Ack( void ) {/*FM31256应答程序*/
            P5OUT &=~ RTC_SCL;// SCL=0
            P6OUT &=~ RTC_SDA;// SDA=0
            P5OUT |=RTC_SCL;// SCL=1
            delay(IIC_DELAY);
            P5OUT &=~ RTC_SCL;// SCL=0}
      void FM31256_Send_noAck( void ) {/*FM31256不应答程序*/
            P5OUT |=RTC_SCL;// SCL=1
            delay(IIC_DELAY);
            P5OUT &=~ RTC_SCL;// SCL=0}

      说明:SCL线是高电平时,SDA线从高电平向低电平切换,表示起始条件;当SCL是高电平时,SDA线由低电平向高电平切换,表示停止条件。相关的确认时钟脉冲由主机产生,在确认的时钟脉冲器件发送方释放SDA(高电平),在此期间接收方须将SDA拉低。

      void FM31256_transfByte_to_IIC( unsigned char tran_byte ) {/* CPU字节发送程序*/
            unsigned char i , current_bit =0x80;
            P5OUT &=~ RTC_SCL;
            delay(IIC_DELAY);
            for( i=0; i <=7; i++ ) {
                  if ( tran_byte & current_bit )
                  P6OUT |= RTC_SDA;
            else
                  P6OUT &=~ RTC_SDA;
            current_bit >>=1;
            delay(IIC_DELAY);
            P5OUT |=RTC_SCL;//SCL=1
            delay(IIC_DELAY);
            P5OUT &=~ RTC_SCL;//SCL=0
            delay(IIC_DELAY);
            }
      }
      unsigned char FM31256_receByte_from_IIC( void ){/*CPU字节接收程序*/
            unsigned char mvalue, i, rece_data =0;
            P6DIR &=~ RTC_SDA;//设置为输入方向
            P5OUT &=~ RTC_SCL; //SCL=0
            delay(IIC_DELAY);
            for(i=0;i<8;i++) {
                  rece_data = rece_data<<1;
                  P5OUT |=RTC_SCL;//SCL=1
                  delay(IIC_DELAY);
                  mvalue = P6IN & RTC_SDA;//当前位的值
                  if( mvalue )//接收位为高
                        rece_data = rece_data | 0x01;
                  else//接收位为低
                        rece_data = rece_data & 0xFE;
                  P5OUT &=~ RTC_SCL;//SCL=0
                  delay(IIC_DELAY);
            }
            P6DIR |=RTC_SDA;//P6.6输出
            return(rece_data);//返回收到的字节
      }

      说明:发送到SDA线上的每个字节须为8位。tran_byte为CPU要发送的字节,CPU读入的数据存储在rece_data中。对FM31256存储器可以直接对当前地址进行“读”操作,也可以连续“读/写”多个字节而无须逐一指定地址。依据上述一般步骤,对存储器的访问操作可归纳为3种基本操作: ① 设置当前操作目标地址; ② 写入数据; ③ 读出数据。

      访问存储器操作有多种,如内存“写”、当前地址或顺序连续“读”和随机地址“读”操作。在控制程序中,需要向FM31256内存中写入并读出给定参数、故障信息等数据。内存读/写的方法如下:

      内存写操作,首先由CPU发送从机地址,然后是内存16位地址,主机通过设置从机地址字节的最低位为0声明一个写操作;接收应答信号后,CPU向FM31256发送数据的每个字节,之后器件又产生应答信号,任何数量的连续字节可以被写入,以停止信号结束传输。有两种类型的读操作:当前地址读操作和随机地址读操作。读操作同样先由CPU发送从机地址,主机通过设置从机地址字节的最低位为1声明一个读操作。当要进行随机读操作时,还要在读取数据之前,发送16位内存地址之后读取任意个字节,每个字节后应跟随应答信号,以停止信号结束传输。

      在电磁铸轧电源控制装置的主控程序中,还将调用时钟刷新函数Flash_time()、时钟写入函数Write_time()、寄存器写入函数Register_write()和寄存器读出函数Register_read()。

      启动RTC和WatchDog的流程图如图4所示。

ic72新闻中心

图4 启动RTC和WatchDog的流程图

      结语

      将铁电存储器用于电磁铸轧电源控制装置中,与MSP430系列单片机相结合,充分发挥了其强大的功能;同时取代了传统的EEPROM和实时时钟芯片,既降低了硬件成本,又简化了软件设计。实践证明,FM31256具有良好的推广应用前景。

 
【相关文章】
·带RTC的I2C总线铁电存储器FM31256
·基于C8051F320USB接口的数据采集存储电路的设计
·基于PS501的智能电池系统
·传富士康拟收购商丞品安涉足内存业
·基于EP9315的附网络存储NAS系统设计
·串行DataFlash存储器及其与单片机的接口
·嵌入式系统中的Flash存储管理
·铁电存储器在仪表中的应用
·Flash存储器在TMS320C3x系统中的应用
·针对共模雷电冲击试验的开关电源设计
·Ramtron 推出汽车级16Kb SPI接口FRAM器件
·虚拟技术助存储网络实现三大目标
·串行存储器AT45DB161B在车辆行驶记录仪中的应用
 
 
IC新闻搜索
 
热点新闻
基于红外超声光电编码器的室内移动小车定位系
基于闪烁存储器的TMS320VC5409DSP并行引导装载方法
非移动市场需求飙升,ARM预计2010年出货量超50亿片
一种快速响应的电容式湿度传感器感湿薄膜设计
利用特殊应用模拟开关改进便携式设计
无线传感器网络跨层通信协议的设计
基于ARM9内核Processor对外部NAND FLASH的控制实现
基于GSM技术的汽车防盗系统的设计
热电阻在烟叶初烤炕房温度控制中的应用
高速数据转换系统对时钟和数据传输的性能要求
友情连接
 关于我们  IC论坛  意见反馈  设置首页  广告服务  用户帮助  联系我们
copyright:(1998-2005) IC72 中国·芯片交易在线
(北京)联系电话:(010)82614113、82614123 传真:(010)82614123 客户服务:service@IC72.com 库存上载:IC72@IC72.com
在线MSN咨询:ic72sale8@hotmail.com 通信地址:北京市西城区西直门内大街2号大厦15层 邮政编码:100013
(深圳)联系方式: 在线MSN咨询:ic72sale6@hotmail.com 在线QQ咨询:191232636 通信地址:深圳市福田区振华路
注 册 号: 1101081318959(1-1)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9